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Abstract. Motivated by an alternative to the concept of a prebiotic soup in the form of interacting
crystal growth close to hot vents, we investigate a model system in which the growth rate of a partic-
ular entity is modified (enhanced or reduced) by other entities present, thus forming a web of cross
catalysis. Initially random interactions are imposed, but the entities compete for a common source,
and some entities may thus vanish in the competition. New entities, or mutations (error copies),
with randomly selected interactions to the web are then introduced, and the concentrations of the
entities are followed as solutions to stiff ordinary differential equations. Entities with positive growth
may create new related entities with slightly randomly modified interactions to the web. Extinctions,
wild-type survival and replacement, and self-organization to sustain periodic external variations, are
studied. It is shown that even systems with mostly cross-inhibition and no initial autocatalysis may
eventually create highly stable self-organized systems. We find that an already established cross
catalyzed system often wins over a selfreplicating invader (or mutant).

Keywords: genetic takeover, hydrothermal, mineral origin of life, quasispecies

1. Introduction

The idea by Cairns-Smith that life originated from self-organizing crystallization
processes is explored here. This theory (Cains-Smith, 1982) has recently become
more attractive with the discovery that a possible common ancestor of life as we
know it seems to be closely related to hyperthermophiles, and that large communit-
ies of such cells are abundant today in deep subterranean bacterial ecosystems,
notably in hydrothermal systems. (See Walter, 1996). Such a craddle for the origin
of life on Earth or other planets is believed to be much less sensitive to outside
catastrophes like meteorite impact than a possible surface related prebiotic soup.

Self-replicating entities based on nucleic acids are experimentally difficult to
realize, and such an RNA world may have emerged from a more primitive setting.
Alternatively, reliable self-replication is abundant in crystallization processes and
such processes may be kinetically much faster in a hot setting than in the originally
proposed context of vital muds. Moreover it is widely felt that focusing on pro-
cesses needed for the system to work bypasses the problem that many related and
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equally probable processes presumably would act as inhibitors of the few necessary
ones.

In the present study, we do not rely on an information system dependent on
precise copying of particular crystal defects. Also we explicitly study the effect
of having an overwhelming negative influence on the growth of a particular spe-
cies due to inhibitory interactions from other species. Autocatalysis is thus not an
intrinsic property from the outset, but may be an emergent property.

2. Evolution with Mutual Interactions, Invaders and Mutants

The kinetics for a large system of interdependent crystal entities is dependent on
many details, which cannot at present be captured by tractable model systems. The
feature of most interest here is that the rate of growth of a particular crystal entity
is not necessarily autocatalytic i.e. proportional to the amount present, but may
depend on the surface area, degree of saturation, or local diffusion properties of the
medium (Sultanet al., 1990).

We have restricted ourselves to a much simplified set of kinetic equations,
which to leading order may nevertheless incorporate essential elements of a system
characterized by interdependent growth or decay.

The basic rate equation for the amount pr volume unit of a specific crystal entity
yi is thus taken here to be dependent on interactions from the other entities and
a common sourcem, for which the entities compete. In its simplest form (to be
extended below), such a system may evolve due to the equations

dyi
dt
= m

N∑
j=1

AijBij yj − kiyi (1)

We take the amount ofm present equal to a basis valuev minus the total amount
used up in they-entities, and thus

dyi
dt
=
v − N∑

j=1

yj

 N∑
j=1

AijBij yj − kiyi (2)

dm

dt
= −

N∑
j=1

dyi
dt

(3)

The elementsAij contain the interaction strength of entityyj upon the rate ofyi ,
and this may be taken to be a positive or a negative number. TheBij elements are
either 0 or 1 that is, the nonzeroB elements act as connectivity elements. Theki
elements are, for the time being, simple first order rate constants for degradation of
yi .
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We initialize the system as follows.v and system sizeN are kept constant in a
simulation. Also the number of nonzeroB elements per row is kept constant toK.
If we chooseK much less than system sizeN , the rate of any entityyi only depends
on interactions from relatively few other entities, but we will also discuss systems
with K approachingN . For thei’th rate, we thus chooseK randomly selected
j ’s, for which Bij = 1. For the samej ’s, we select randomly chosen values for
Aij from, say, a uniform distribution between –L1 and +L2. Indeed, we use the
interval –σ to 2.0 – or with parameterσ about 1.90, to be varied below. Finally the
particularki is generated as a random real number between 0 and 1. The system is
now defined and integrated with initial values of theyi ’s much less thanv, usually
1.0×10−6 � v = 15.0.

Numerical aspects of the integration will be described in a section below, suffice
is here to say that we use a stiff ODE solver. The behaviour of the solution as
function of time is now basically as follows. Originally, most (if not all) rates may
be negative, and the corresponding entities thus decay and may eventually die out.
If a few nondecaying entities are present, their growths increase the term6yj , but
this in turn diminish the value ofm = v − 6y. Thus the growth of a few species
may aggravate the decay of other species. When a particular decayingyi vanishes
(or rather, goes below a critical low concentration such as 10−2 times its initial
value), it is replaced by a new entity (an invader), and its connectivity to all species
are redefined by random elements as described for initialization above. Also the
value ofki is replaced.

The initial phase is thus characterized by many extinctions and perhaps growth
of a few entities. For successful entities, we introduce related entities (‘mutants’
or slightly deviating copies) as follows. We monitor any positive partial rate (m
6ABy), and if its accumulated magnitude over one or several time steps exceeds
a predefined threshold, we decide that an error copy has appeared. To keep system
sizeN constant, we find the smallestyj and replace it with the error copy. The
interactions of the mutant is defined to be closely related to those of its originator.
Sayyk mutates and the mutant is introduced as entityyj . We thus copyB ’s for
entity k into speciesj , and replace one 0 with 1 (or vice versa) in the mutant.

Extensions to this basic model will be discussed in later sections.

3. Dynamical Properties of the Simple Model

The simple model may suffice to familiarize the reader with some of the properties,
we want to examine in the extended model to be introduced in later sections.

Most studies were caried out with entity numberN around 100, although values
as high as 512 were attained. In all studies the source termv equals 15.0, and
all entities were started with the valueyi = 1.0×10−6 that is much smaller than
their possible maximumyi≈v = 15.0. The time evolution of all entities were
followed, but for practical reasons, only eleven entites are shown in the following
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Figure 1. Concentration of entities versus time. Only 11 entities out ofN = 95 are displayed for
convenience. Medium connectivityK = 12, of which approx. 3.5% are positive elements in the
connection matrixA. Sourcev = 15.0. For a long initiation time,T < 6.0, all entities stay small,
after which a certain entity grows fast, only to be outcompeted soon after by others. At aboutT = 8.5
some of the entities shown go extinct, and are replaced by invaders or mutants (error copies) of the
more successful entities.
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figures. The differential equations were integrated with variable step lengths, to
ensure that the local solution of each entity was computed to relative accuracy
1.0×10−5. In Figure 1 a typical solution is depicted, where the onset of sustained
growth of some entities are shown. Here,N = 95 and the numberK of nonzero
elements per row in matrixA is taken as 12 that is a particular entityyi has its
rate defined by 12 randomly selected entities. The interaction elements in theA

matrix were taken as uniform random numbers between –1.93 and +0.07 that is
7 out of every 200 computed elements, or 3.5%, are positive. Thus in each row
of A the probability for encountering a single positive element is moderate and
the special case of autocatalysis, i.e. a positive diagonal element, is even less. The
initial phase of the time evolution of the system is thus characterized by many
entities with negative rate, and these entities vanish on a time scale smaller than
that shown in Figure 1.

Indeed, about half the depicted subpopulation diminishes fast and dies out in the
short time spanT < 0.02. They are replaced by invaders with randomly chosen
parameters as described above, about half of which also vanish over a somewhat
longer time span 0.02< T < 0.12. However a few of the invaders manage to stay
approximately stationary, albeit with very low concentration, for a much longer
time span.

During this initial phase none of the entities may have a nonzero (let alone a
positive) diagonalA element, and thus none of the entities have autocatalysis. It
is found, however, that such communities may have cross catalysis through the
off-diagonal elements, and thus some entities with mutual sustained growth.

Indeed in the present run, no autocatalysis is present at the onset of rapid growth
aboutT≈6, but some entities increase orders of magnitude on a time scale of about
0.3, which is indicative of how steep the growth may be in the following figures.
The rise and fall of entities seen in Figure 2 occur in a system, in which autocata-
lysis still not has occurred. Only aboutT = 7000 is a single such entity present,
but it is unlikely to be among the highest concentrations, since mutations of this
entity then would have proliferated, and many autocatalytic entities subsequently
recorded. Instead we find that this entity is absent for 7500< T < 18 500. A new
autocatalytic entity appears forT = 19 000 only to die out again. Only afterT =
22 500 one or two autocatalytic entities are consistently present.

Invaders are common initially, but when the entity community is characterized
by enough members with high concentrations, the value of the source termm =
v−6yi is very small, and thus a newborn invader may have kinetics dominated by
its first order rate−kiyi , in other words, it rapidly goes extinct again. Only if the
invader happens to have the right connections to high concentration entities, it may
start to grow. Unsuccessful invaders are replaced with mutants selected from the
most abundant entities. Thus the predominant innovation in the system comes from
mutants. When a mutant is introduced, the entity with lowest current concentration
is removed, and the entity to mutate is selected among the remaining entities with
probabilities proportional to their current concentrations.
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Figure 2.Concentration of entities versus time. Again, only 11 entities out ofN = 95 are displayed
for convenienee. Parameters as in Figure 1, but two orders of magnitude longer time. The entities
which grew up in Figure 1, have gone extinct at aboutT = 100. A series of mutants enters between
T = 150 and 250, only to go almost extinct byT = 600. A new set of mutants enters afterT = 1250.
The more successful entities create mutants (error copies), which may stay in the population until
the entity with the lowest current concentration is replaced by the introduction of yet another mutant.
Entities with a common root have kinetical parameters, which on average yields a wild type entity,
around which they cluster.
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To keep track of the origin of a mutant, we introduce a Hamming sequence and
distance as follows. At birth of an entity (invader or mutant) it is assigned a binary
code with 775 bits, its Hamming sequence. When a mutant is created from a preex-
isting entity, the new Hamming sequence is changed one (randomly selected) bit
from the original sequence. In due time, this entity may mutate to create an entity
with Hamming distance 2 from the original, etc. The average Hamming sequence
of the community is said to be the wild type. Often an entity with this sequence is
indeed present, but this need not be so. The distribution of Hamming distances from
the current wild type may be recorded over time. If all entities present originated
from the same entity, or its mutants, the distibution has a peak close to Hamming
distance zero (the wild type).

Such a cluster of related entities is known as a quasispecies (see Novak, 1992).
However, if two unrelated species have coexisted for a substantial time, they may
both have many mutants, and these quasispecies show up as two strong peaks, both
of which are quite distant from the mean sequence in the community, the wild type.
This no longer represents a single strong survivor in the community. A recording
over time of Hamming distances from the current wild type is shown in Figure 4.
One quasispecies may replace another quasispecies during the evolution.

As already stated, none of the quasispecies in Figure 3 are characterized by
entities with autocatalysis, the large majority of the entities present do not have pos-
itive diagonalA-elements. Also quasispecies often exist over a substantial longer
period of time than the life time of the individual entities.

Generally it is found that quasispecies build around entities with autocatalysis
may outcompete other quasispecies, which do not exhibit such direct catalysis.
However the reverse is also true. Thus we find that it is unnecessary to wait for the
occurrence of an entity with autocatalysis in order to have self-sustained growth
and surviving quasispecies. We will revert to this in more detail in sections below.

4. Crystals as Candidates for Cross Catalysed Network

With the above results in mind, we may discuss whether communities based on
crystals could display some of the phenomena found in the simple model above.
Many general properties found in growing crystal communities are already men-
tioned in substantial detail in (Cairns-Smith, 1982). Small changes in the crys-
tallization environment may yield quite some changes in porosity, flow rates, ion
exchange properties, and so on. One type of crystal may be helpful to nucleate
another types growth. Great variety of micromorphologies may arise from local
changes in permeability, pH etc. Crystals displaying outgrowth in long threads may
yield particular three dimensional structures and defects depending on conditions
set by other entities in the surrounding, and the break up rate of such threads and
the transport of such seeds in the system may be a common primitive proliferation
mechanism.
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Figure 3.Concentration of entities versus time. Parameters as in Figure 1, but time now extends toT

= 25 000. The system does not come to a rest.
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Figure 4. Quasispecies competition during evolution. The wild type has properties as the average
entity. Hamming distance for an entity is defined as number of mutations from the wildtype. Ab-
scissa is logarithm of (Hamming distance plus one). Initially, entities are scattered with random
hamming distance to the mean, but soon a few entities outgrow the rest, and mutations of these
entities dominate. Up to aboutT = 5000, the wild type is determined by two quasispecies, each
with a (log) distance of about 0.6. AfterT = 5000 one of these grows at the others expense, and
thus the dominant quasispecies appears closer to the wildtype, while the other appears (relatively) to
have moved to (log) distance of 0.9. These two quasispecies coexist for a long time. At aboutT =
14 000, a successful invader, with distance 380 (log distance approx. 2.6), starts to create yet another
quasispecies. AtT = 25 000, the two former quasispecies are much reduced, one has disappeared,
but the other has still a few, high concentration, entities present, which still define the wild type of
the entire population.

The point is that crystal growth may generate three dimensional structures,
which may be modified in a reliable way by activators and inhibitors as described
above. This feature is not present in just any net of entities, say, based on reactions
of small inorganic molecules. In this respect the modifiable micro structure of
crystals is related to the three dimensional structure of small RNA’s or proteins.
This property of crystals is well established and widely explored for making effi-
cient catalysts in industry. It is thus not just the overall chemical composition of
such catalysts, which is important, but to a large extent, the conditions prevailing,
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when the catalyst is made. This defines the impurities, active catalytic sites, micro
structure etc., which make the difference between just an inorganic compound and
an efficient catalyst with the same overall chemical composition.

In general the resulting rate for a particular entity is thus not necessarily linked
to exponential, autocatalytic growth, which is one reason we have chosen to build
our model without such explicit terms. Also the interactions may or may not be
nonlinear, but we have chosen not to build in highly nonlinear off-on rates from the
outset, as this might be seen as bypassing the problem of how such well-tuned
control arose in the first place. Our model simply supposes that the growth or
dissolution of some entities in the community has impact on the possibility for
growth of other entities, and we have chosen a very simple first-order model for
such interactions. It seems more interesting to study the possible onset of self-
organization in a net based (initially at least) on such very simple interactions,
rather than nets with build-in elaborate off-on control systems from the outset.

As previously stated, we do not incorporate entities with autocatalysis from
the outset, and our finding that sustained mutual growth and long time survival of
quasispecies build on such non autocatalytic interactions is likely to be a feature,
which may thus arise in real systems as well. Notably this is found also for systems,
in which the mutual interactions are predominantly inhibitory.

Also we find coexistence over substantial time periods of quasispecies, and the
phenomenon of take-over presupposed in (Cairns-Smith, 1982). It is thus conceiv-
able that a predominant dynamical structure in the system is replaced over time
with another dynamical structure, which arises within the system with a minor role
initially.

5. Extended Model. Cyclic Environmental Conditions

Self-organization in crystal communities was originally suggested for a clay en-
vironment, but such a vital mud scenario has been replaced by an environment
related to deep underground hot vents. Speculations on the origin of an initial
energy source to keep the system far from equilibrium and make the eventual
necessary organic polymerization processes feasible have pointed to the possibility
of harvesting energy from cyclical heating/cooling processes. Indeed it has been
proposed that the first organisms were such heat engines (Muller, 1995).

The dynamical properties of the entities in our simple model may thus be ex-
tended to a situation, in which the environment, and thus the parameters in the
system, undergo cyclic variations. One may wonder whether the established self-
organization in the system may survive such changes, and if so study possible
adaptations to the cyclic environmental conditions. Also we will present the ob-
tained results in the form of averages over many (100) runs, rather than details
connected to a single run as above.
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Generally all parameters in the system may change up or down according to
very different rules. We have chosen a very simplified form for the implementation
of a time variation, which would create a significant constraint on the rate of each
entity. We only redefine theki ’s to be slowly cyclically varying with time. Thus

ki(t) = k0
i

(
cos(wt)+ 1

2

)
(4)

with period of this cycle taken to be very long (say, 5000) (See Figure 8).
This choice makes the explicit first order rate constants vary betweenk0

i and
zero at the bottom of the cycle. After the initial phase, wherem has dropped from
its initial value to almost zero, this imposes substantial stress on entities, which
may have done well during a phase with smallk’s, but which then face an enlarged
degradation rate during the peak of the cycle.

We will discuss the results in terms of the three parametersN , the system size;
K, the connectivity; andσ , the shift parameter, which monitors the relative amount
of negative versus positive random elements in theA-matrix. Recall thatK usually
is taken substantially less thanN , typical values being (N , K) = (64, 12) which
is a medium to highly connected system, or (N , K) = (256, 3) which is a system
with low connnectivity. Elements ofA are generated, as stated earlier, as a uniform
distribution between−σ and 2.0−σ . Thusσ = 1.0 means elements between –1 and
+1,σ = 1.90 means elements between –1.90 and +0.10 that is only 0.10/2.0 or 5%
are positive. We will useσ values mostly between 1.80 and 1.95. The simulations
were carried out then for fixed values ofN ,K, σ , but different seeds to the random
number generator, and the results for 100 such runs were averaged.

First we discussextinctions. The number of extinctions per unit time (the ex-
tinction rate) is high initially as discussed earlier, but when a growth system has
stabilized the extinction rate comes down. A mutation, or a successful invader, may
lead to further extinctions. As we would expect from the introduced cyclic variation
of the outgoing rateski, Equation (4), this cyclic variation tends to destabilize
the system, and an increased extinction rate is observed when theki ’s peak. See
Figure 5 or Figure 8.

The magnitude of this cyclic extinction rate is dependent upon the connectivity
andσ as well. In medium to highly connected systems (N , K) = (64, 12), a dra-
matic (about 20 fold) increase in extinction rate magnitude is observed, when the
average number of positiveA elements is reduced from 20% (σ = 1.60) to 2.5% (σ
= 1.95). Thus in such highly connected systems, a small relative amount of positive
connection elements has a profound effect on the extinction rate encountered (see
Figure 5). Each time an extinction occurs, an invader is introduced, but if this
invader at birth has a negative rate, and thus goes extinct shortly, it is replaced by
a mutation instead. The number of successful invaders is remarkably small, even
in systems displaying a high rate of extinctions. For the high-extinction system in
lower part of Figure 5, rate of successful invaders never exceeds 0.02 and mostly
stay around 0.005.
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Figure 5.Extinctions versus time. For medium to highly connected systems, (N ,K) = (64, 12), with
relatively many (20%) positive elements in the connection matrixA, the extinction rate is only mod-
erate, and it cycles in time with the cyclic alteration of the outgoing ratesk0

i
. These extinctions tend

to diminish with the number of cycles (upper figure). With number of positive elements diminished
to 5%, a substantial increase in extinction rate through the cycles is observed (lower curve). See also
Figure 8.
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Figure 6.Extinctions versus time. With lower connectivity, here (N , K) (128, 3), and 5% positive
elements (i.e.σ = 1.90), the extinction rate decreases again, compare Figure 5.

However in systems with low connectivity, (N , K) = (128, 3) a much smaller
extinction rate is encountered, and it stays low even forσ = 1.95 (see Figure 6).

Indeed in such systems of low connectivity, the extinction rate is so low that
the total number of extinctions during a particular run is less than the system size
N . Thus the source of renewal in the system is predominantly entering through
mutations.

Next we have followed thediagonal termsduring the simulations. For a partic-
ular run, we record at fixed time intervals, if the system has any positive elements
in the diagonal. For all 100 runs with fixed parameters (N , K, σ ), the fraction of
runs, which has no positive diagonal elements at timet is recorded. This fraction
is nD(0). We monitor the number of positive elements in the diagonal as well, but
slightly differently. If at timet the system has one or more (d) positive diagonal
elements, the relative numberd/N is recorded, and after completition of all runs,
the mean such fraction at timet is depicted asnD(p).

For medium to highly connected systems, (N , K) = (64, 12), we observe an
increase with time ofnD(p), thus reflecting an increased abundance of autocata-
lytic members. This abundance tends to grow faster when extinctions start to grow
during the cyclic variations of theki ’s, with subsequent relative stasis when ex-
tinctions come down again. In such highly connected systems, the relative number
of positive diagonal elements present (nD(p)) grows from 0 to about 0.3 forσ
values between 1.6 and 1.8, only to show slower growth forσ = 1.95, presumably
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Figure 7.Diagonal terms in the connectivity matrixA. The fraction of runs at timet , for which no
positive diagonalA-element is present, is depicted asnD(0). It decreases with time. If at timet , a
system hasd positive diagonal elements, the fractiond/N (i.e. relative to system size) is recorded.
Depicted is the mean of this fractionnD(p) over 100 runs. UsuallynD(p) increases with time, but
for low connectivity and/or low number of positive randomly generatedA-elements,nD(p) stays low
and the system is dominated by entities, which have no positive diagonal elements and the system
is thus not autocatalytic. Dashed curves: Medium to high connectivity, (N , K) = (64, 12) andσ =
1.90 that is 5% positive randomA-elements. Solid curves: Low connectivity and lower number of
positive elements, (N ,K) = (128, 6) andσ = 1.95.

due to the smaller probability of creating positive elements now, but despite the
vastly increased extinction (mutation) rate, as discussed above. On the other hand,
the fraction of runs, which at timet has no positive diagonal elements (nD(0)), in
general decreases over time, but the final value increases a lot, from about 0.2 to
0.8, whenσ varies from 1.6 to 1.95.

For systems with lower connectivity, (N , K) = (64, 3) or (N , K) (128, 6),
both withσ = 1.8,nD(p) curves are somewhat lower, butnD(0) curves are about
twice as high. For even lower connectivity, (N , K) = (128, 3), (N , K) = (256,
6) or eventually (N , K) = (256, 3)nD(p) only goes up to about 0.1 (128, 3) or
eventually, much lower values as 0.04 (256, 3). CorrespondinglynD(0) decreases,
eventually to about 0.7 (see Figure 7). Ifσ additionally is increased, from 1.80
to 1.95,nD(p) as expected is very low, going from 0.1 to less than 0.01 (128,
3), with corresponding high sustained values ofnD(0), about 0.98 throughout the
simulation.
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Figure 8. Cyclic variation of extinction rate for very long times. The extinctions do not die out
significantly in this system of low connectivity (N , K) = (128, 6),σ = 1.95. Also shown arenD(0)

(top),nD(p) (bottom) and the mean outgoing ratek0
i .

In conclusion, lower connectivity (smallerK relative toN) and a decreasing
percentage (less than 5%) of postive connection elements (σ approaching 2.00)
display runs in which entities with autocatalysis (positive diagonal elements) play
a minor role. Increasingly, in such runs, the entire system consists of entities, for
which no such autocatalytic enties are present at all. Nevertheless these systems
have a low extinction rate, as observed above, and successful invaders are rare.
Thus these systems are not prone to be overtaken by invaders, or mutants, with
autocatalytic terms, but selfsustained even with predominant negative elements in
the connection matrixA.

6. Numerical Method

Before we enter the discussion, we provide some information for the reader inter-
ested in the details of our numerical method.

The numerical integration of the differential equations was performed with a
stiff solver of Rosenbrock type, with variable step size control. Indeed, integration
step lengthh may vary from abouth = 10−5 during periods with high extinc-
tion rate, to abouth'1 during periods of quasistationarity. For sampling purposes
(recording ofnD(0) andnD(p), say) we restrictedh to at most 1.
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The Newton iterations in each time step, necessary with implicit stiff integra-
tion schemes, involve the solution ofN linear equationsMx = b with matrix M
nonsymmetric. The condition number was evaluated and a reduction in step sizeh

made if necessary.
We made a crude estimate of the time for which the next extinction would occur

(based on linear extrapolation of current rates and concentrations). We restrictedh

to a fraction of this limit. This feature to a large degree prevents the ODE solver to
compute negative concentrations.

Also, our choice (after a small initiation period) to discard invaders with neg-
ative initial growth has a substantial effect on computation speed. When such
invaders were followed in preliminary versions of the code, these invaders would
go extinct shortly, only to be replaced largely by new shortlived invaders, thus
restrictingh.

7. Discussion

Previous studies of the dynamical properties of nets of entities with cross coupled
interactions belong largely to two classes, cellular automaton models and small
systems of differential equations. In (Kauffman and Johnsen, 1991), a key paper
exploring a cellular automaton approach, a coupled system of genes restricted to
off-on states is studied. Many papers on related models have appeared (see Bastolla
and Parisi, 1998).

The confinement to off or on states of the entities present make such models
comparatively easy to program, and fairly large communities of entities may be
studied. However, with our model, we would like to study systems more closely
related to actual chemistry. In such systems, it is not the system with lowest fitness
(defined as the lowest rate) which is most prone to vanish. Rather it is an entity
with low current concentration and low (negative) rate. Thus a restriction to off-on
states may introduce peculiarities, which may not be found in systems, where the
individual entities past history is taken into account. An entity may during the past
have grown to a level, where it by far is dominant in the community, yet its current
rate may be close to zero (quasistationarity). It is not obvious that invaders with
comparatively very small concentrations, but current higher rates, may outcompete
the dominant entity.

Networks of interacting entities described by differential equations in the con-
text of the dynamics of small sets of self-replicating polymers have been much
studied (Stadleret al., 1993, 1995; Phillipson and Schuster, 1994; Happel and
Stadler, 1998) on the basis of the so-called second order replicator equation, which
is equivalent to the Lotka-Volterra equation (Hofbauer and Sigmund, 1998)

dyi
dt
= yi

(
ki +

∑
aij yj

)
(5)
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Our simple growth equation, however, is not of the special Lotka-Volterra type, but
the rhs is a more general bilinear form. The sizeN of interacting entities studied
here is substantially higher than those reported above.

The present work shows that cross coupled kinetic systems without explicit
autocatalysis and with predominant inhibitory interactions may selforganize non-
etheless, and have stable quasispecies over time intervals much longer than life-
times of individual entities. Interactions are not from the outset of a strongly nonlin-
ear off-on nature, rather simple linear interactions are invoked, but due to compet-
ition for a common source, nonlinear dynamics is encountered. Thus the emergent
organization is not based on the property of a selfreplicating molecule (like RNA)
or other intrinsically autocatalytic such entity.

Medium or highly connected systems have a high probability of creating en-
tities with positive diagonal elements, and such autocatalytic nets are close to the
systems already investigated in other works. We have thus concentrated on systems
with relatively low connectivityK�N , and a low density of positive interaction
elements. In our system, growth starts in a system with no positive diagonal ele-
ments as a rule. Although autocatalytic invaders may appear, mostly they are not
successful, once a cross catalyzed system has grown up. Thus such a system is not
prone to be overtaken by the appearance of an autocatalytic entity. Indeed, such
invaders are mostly unsuccessful (they have negative growth from birth), and in our
algorithm they are replaced by mutants. We thus find that an already established
cross catalyzed system wins over a selfreplicating invader (or mutant).

We have not investigated extinction patterns for power law relationships, nor
have we plotted lifetime distributions. One of us (R. E.) has recently published
such data for a related model

dyi
dt
= 1

Ki

N∑
j=1

AijBij yi(κ − yj ) (6)

with variable connectivityK for each species, and upper bound due tom = v−6yj
replaced by a carrying capacityκ, i.e. a system with logistic growth (Engelhardt,
1998). One finds a power law distribution for extinction patterns with exponent
β'1, and lifetime distributions of power law shape, but with exponent dependent
on system sizeN . We have omitted such power law studies here, since data follow-
ing such laws may be found even for systems without selforganizing underlying
mechanisms (Newmann, 1997).

Our aim has rather been to investigate the selforganizing potential of a cross
coupled system, in which as little as possible has been predefined. Thus we have
very simple interactions (linear couplings), predominantly inhibitory, and compet-
ition among entities is introduced simply by feeding all entities from a common
source, which may be almost depleted by the entities’ growth.

The essential system feature is not just the imposed interactions of the entities.
Rather it is the capability of an entity to mutate (or error copy) to an entity, which
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has related interactions to the other entities. This property has been found for
small strands of RNA, and small variations in the primary sequence yields (model)
secondary structures related to the original (Schuster, 1993; Grüneret al., 1996).

Thus theshapeof RNA entities may be modified gradually by such mutations.
We have presupposed that crystal entities may influence each others growth in a
similar graded way due to changes in the crystallization medium, thereby creating
related entities with different impurities, microstructure and interactions. Such sys-
tems may display robust selforganization, as shown here. On the other hand, such
graded interactions isnot a feature of just any set of small chemical compounds.
Although such entities also initially show connections in their growth properties,
generally such small molecules are unable to produce related species with only
small changes in their molecular constitution and interactions. Thus our model
equations do not describe such a small molecule system, but may capture some
features of an interconnected crystal community.

In our model, we would not see self-organization, if the initialv6ABy term
is much smaller than the outgoingkiyi term. Growth is made possible through a
value ofv > ki . This is to say that the initial conditions are such that net crystal-
lization (rather than dissolution) is presupposed, but then the (mostly inhibitory)
interactions among entities define, which (if any) entities are actually growing.
Cross catalysis with mostly negative connections is possible, as the inhibitor of an
inhibitor is in effect an activator.

We may comment on an aspect of crystal communities versus a community of
small RNA (or protein) strings. For the latter macromolecules, it has been shown
that each of the most common structures may be realized with a huge number of
primary sequences. Thus the total system may ‘diffuse’ around in primary sequence
space, but remain neutral with respect to its essential property, its structure class.
(A model for evolution on a fitness landscape with a tunable degree of neutrality
was recently published by one of us (see Newman and Engelhardt, 1998). However,
only a few mutations are required to create a member of another structure class, and
thus the majority of common structures, i.e. ‘shape space’, may be covered from
any given sequence with only very few mutations. This aspect is one of the key
features of the immune system (Smithet al., 1997). It is not obvious that a pure
crystal community has the same property, and thus the ‘shape space’ it may cover
is presumably much more restricted. With the build in of molecular connections
based on phosphate chains and sugar kinks, as suggested by Cairns-Smith, a much
more flexible crystal community may emerge. The initial pure crystal community
may however have properties captured already by our simple model.
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