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Biological pattern formation is a process that so far has gone largely unexplained. Mechanisms for cellular
differentiation, and pattern forming processes, must both have emerged within the same short time
interval. It now seems unlikely that the great diversity of observed patterns can be accounted for by the
action of one or a few specific patterning genes, or, in its extreme form, the idea that there might be a
single such proto pattern gene. Many seemingly related pattern forming processes, such as segment
formation, depend on unrelated genetic mechanisms. Thus another common feature as a proto pattern
gene is needed to understand the onset of pattern formation.

Experimental biologists favour mechanisms in which morphogenetic gradients are the main source of
positional information. Specific combinations of genes (cues) are activated differentially by thresholds
along particular regions on the gradient. Among theoreticians the pattern forming processes are believed
to some extent to be dependent upon true symmetry breaking processes, which can occur inmost nonlinear
control systems, of which the Turing mechanism is an example.

It is argued here that the common fundamental feature of gene control systems is a high degree of
cooperativity. Such highly nonlinear systems may originally have been capable of reading subtle
differences in the concentration of a controller, but the evolutionary pressure to refine this kind of
processes in single cells would eventually have led to gene clusters with steep off-on control, and this is
seen experimentally in many such systems. Some nonlinear systems of this type have for some time been
known among theoreticians to be prone tomultistability (a necessary precondition for cell differentiation),
chemical time oscillations and spontaneous spatial pattern formation by Turing’s mechanism. Increasing
cooperativity in the defining rate laws greatly facilitates the tendency for such phenomena to arise, and
we demonstrate this explicitly for Turing pattern formation. We argue that all these phenomena arose
simultaneously with the capability of interpreting positional information along simple gradients.

Introduction

Genes containing the homeobox sequence, which
are key regulatory genes, are widespread and highly
conserved in higher multicellular animals. The
evolutionary establishment of some of these classes
seems to be at least as ancient as the flatworm. It has
been speculated that the homeobox class of genes is
somehow connected to the origin of pattern formation
in multicellular systems, such as establishment of
bilateral symmetry, and later segmentation. A recent
overview of the experimental results, which may define
the genes essential for defining a common ancestor of
metazoa, was given in Shenk & Steele (1993).

However, the basis of pattern formation emerged
well before the Cambrian explosion some 600 million
years ago. Many ‘‘defining’’ characteristics for the
metazoa are widely distributed among unicellular
eukaryotes. Positional information seems to be present
already in the ciliates, and fungi and plants arose much
earlier than the metazoans, with their own systems of
pattern forming processes. Thus the building blocks
for some form of pattern formation were present long
before their use in multicellular pattern forming
processes, and these building blocks must then have
originated with different essential roles.

It will be stressed here that the actual pattern
forming processes observed in early evolution have a
more common feature than a single ‘‘patternemail kel3ah.unidhp.uni-c.dk
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protogene’’ and thus the homeobox genes are not
‘‘pattern’’ genes as such, but rather convenient control
genes linked to another set of fundamental pattern
forming processes. In discussions of homeotic genes
and their function, it has been stressed that the function
of these genes is especially striking because it is
not dedicated to the production of any particular type
of pattern (Kenyon, 1994). Thus the gene cluster
(the zootype), which has been suggested to define
the kingdom Animalia, is a system of positional
information and does not necessarily encode any
particular pattern (Slack et al., 1993). Also homeobox
genes emerged much earlier in evolution than the
zootype and the common feature in terms of pattern
forming capability is not just that these genes
encode proteins which control other genes. It will be
suggested that the key feature of these genes, from
the standpoint of pattern formation, is their ability
to create highly cooperative, on–off dynamics. Such
dynamics is well known to be capable of generating a
rich variety of well controllable patterns.

Homeobox genes are involved in segmentation
of Drosophila and the control mechanism has been
intensively studied experimentally. As this system
is one of the most well-known systems genetically,
the control mechanism leading to segmentation in
Drosophila has recently been the subject of intense
research, in the hope of gaining an insight into the
fundamental pattern forming mechanisms governing
early embryonic development (see Wright et al., 1989;
Riddihough, 1992a,b; Wilkinson, 1993).

A gene hierarchy seems to control the initial
transition from the egg to a segmented embryo in
Drosophila. In the initial phase of this hierarchy, the
maternal gene bicoid creates a gradient of its protein
along the anterior-posterior axis of the embryo, and
this gradient provides positional information for the
so-called gap gene hunchback, which in turn provides
another gradient for other gap genes.

It is experimentally well established that a decrease
of these gradients by a factor of two is enough to
control the activation of other genes in an on–off
manner. This must mean that the control is highly
nonlinear with effective Hill number of the order of 8
or higher. This feature is also found in many other gene
control systems.

The primary pair-rule genes appear next in the
Drosophila hierarchy. These genes are each expressed
in a series of seven stripes. The mechanism for the
formation of these ‘‘zebra’’ stripes is not known.
Control by a combination of maternal and gap
genes above in the hierarchy seems to be involved in the
expression of particular stripes (Small et al., 1992).

How a number of independent particular stripe

generators (cues) could co-operate to form the
observed four sets (genes eve and ftz, and hairy and
runt) of equally spaced and precisely phase shifted
stripes is a much more difficult problem. Theoreticians
have pointed out that the ‘‘zebra’’ stripes may
alternatively be degenerated by a true symmetry-
breaking mechanism such as Turing’s mechanism; that
is, by an autocatalytic reaction-diffusion system which
is known to be capable of producing such stripes
autonomously. The equal spacing and the phase
relation is easily obtained with such a mechanism. The
particular pair-rule stripes could then be activated by
a combination of maternal, gap and Turing pattern
interactions. This combined cue–Turing mechanism
thus suggests that the pair-rule genes respond to some
degree to ‘‘all-stripe’’ control, as is found for ftz (Hafen
et al., 1984; Hiromi et al., 1985). The main alternative
explanation, the pure cue model (individual stripe
control), was devised to account for experimental
results of the promoter region for hairy, which has
independent regions for particular stripes, or stripe
combinations.

Less is known about the structure of the promoter
of the remaining pair-rule genes, however. For
eve, stripe 2 and 3 seem to be controlled analogously
to hairy. Almost nothing is known about the promoter
region of runt. The possibility of an ‘‘all-stripe’’ control
component has recently been revived by studies of runt
(Klingler&Gergen, 1993;Kagoshima et al., 1993), and
a revision of the hairy control, as hairy stripes 3 and 4
are activated in a concerted mode in a broad region,
which is then resolved by action of runt (Hartmann
et al., 1994). The role of gene runt is currently under
substantial revision, as it seems to be more complex
than suggested by the above hierarchical model. Thus
runt has recently been shown to be involved in the
regulation of the gap genes (Tsai & Gergen, 1994).

We argue here that the feature that makes possible
reliable positional information read-out along a
gradient also makes the control system prone to yield
pattern formation by a number of other symmetry-
breaking mechanisms. Thus gradient control, multi-
stability, oscillations, waves and Turing-like pattern
forming mechanisms are likely to have evolved in a
concerted manner, rather than in succession.

Transcription factors in general are reviewed in
Pabo & Sauer (1992). Recent reviews on Drosophila
have appeared in Ingham (1988), Pankratz & Jäckle
(1990) and Nüsslein-Volhard (1991). Recent models of
the gap level appear in Struhl et al. (1992), and in Jäckle
et al. (1992). The idea of a common gene complex
defining the kingdom Animalia appears in Slack et al.
(1993). Pattern formation in reaction-diffusion systems
were originally discussed by Turing (1952) and
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references to Turing-type models may be found in
Hunding et al. (1990) and Hunding (1993). For
information on properties of nonlinear control systems
in general, as related to biology, see Nicolis &
Prigogine (1977), Murray (1989) and Maini et al.
(1993).

Early Insect Morphogenesis

Drosophila has a rapid establishment of body plan,
in comparison with many other, especially evolution-
ary primitive, insects. In recent experiments on
morphogenesis in less advanced insects it appears that
the cues are absent, at least in the form they have
in Drosophila. Thus these cues, and perhaps cues in
general, are not as important for pattern generation as
may be inferred from the processes studied in
Drosophila. This again opens the question as to what is
the fundamental pattern (stripe) forming mechanism
(see French, 1993).

It has become increasingly clear that the cues in
Drosophila are not the actual fundamental system for
general segment formation.Onemay speculate that the
cues are evolutionary late additions to a fundamental
segmentation mechanism, which has been obscured by
the addition of gap and pair-rule genes. Neither of
these seem to take part in generating one segment after
another in less evolutionary advanced insects such as
the grasshopper (Patel et al., 1992). An intermediate
control system with some gap and pair-rule genes
seems to be present in beetles (Sommer & Tautz, 1993;
French, 1993). The homeotic gene complex in the
beetleTribolium castaneum is reviewed inBeeman et al.
(1993). In Triboleum, a pair of hairy stripes form and
vanish, but a subsequent pair appear in a growth zone
posteriorly. So far (D. Tautz, personal communi-
cation), it is not clear whether this posterior pair comes
on and off in a cyclical way, or how the hairy gene
expression is related to the subsequent expression of
gene engrailed in the cells emerging from the growth
zone. en appears in the regions where hairy has faded
away, to yield a growing number of en stripes.

However, this process does not take place in a
syncytium, and thus stripe control by combinations of
diffusing large molecules as proteins (cues) seems
unlikely. This recent discovery has reopened the debate
regarding the evolutionary significance of the cue
control system found in Drosophila. However, studies
of the pair-rule gene eve in Tribolium indicate that it
controls en expression much as is seen in Drosophila
(Patel et al., 1994), and Susan J. Brown reports
unpublished data to the effect that runt and ftz are
present as well in Tribolium (Brown et al., 1994). Insect

segmentation as a model for evolutionary change is
discussed in Patel (1994).

Other interpretations connected to autocatalytic
reactions, and reaction-diffusion systems, are possible
as well. The much faster overall development rate
required in the life cycle of insects such as Drosophila
may have favoured the observed simultaneous
triggering of all seven zebra stripes. The addition
of bicoid and the gap genes may then be seen as
stabilizers of this process, and the subsequent cues as
an intricate system to make sure that each generated
stripe lines up properly with the local gap genes.
Another role for the gap genes during evolution may
have been tomapout some coarse regionswithinwhich
simultaneous triggering of stripes could occur, such as
an hb region first, then perhaps addition of a Kr region,
something which may actually play a role in the
observed beetle morphogenesis. Sequential formation
of en expression, as observed in the grasshopper, is
occasionally seen to involve more than one stripe,
which evolve simultaneously (Patel et al., 1989).

The results found in the morphogenesis of the beetle
may be tentatively taken in support of this view. One
may envisage a comprehensive model for early,
medium and late evolutionary segment formation
based upon a robust global Turing stripe generator in
which one stripe after another is activated, while an
inhibitor gradually vanishes posteriorly (grasshopper),
then an intermediate form in which the global Turing
pattern is activated in a zone comprising a few stripes
and this progress zone moves posteriorly, while an
inhibitor gradually vanishes (beetle), and finally the
rapid all at once stripe activation in Drosophila, in
which the global Turing stripe generator is activated
over a large region in several somewhat overlapping
subregions provided by the gap genes (Fig. 1). In this
model the essential stripe generator is the global Turing
pattern, which ensures a prepattern of equally spaced
stripes that is then exploited in a progressively more
and more complex manner in different species as these
move up the evolutionary ladder. Indeed successive
segment formation may not be a reliable indicator of
a fundamentally different mechanism from that in
Drosophila. In the tobacco hawkmoth Manduca sexta
the blastoderm expression pattern of genes hb, Kr
and runt are much the same as in Drosophila, but
successive segment formation is present (Kraft &
Jäckle, 1994).

Finally the posterior growth zone in the beetle
may generate stripes, not by a reaction-diffusion
mechanism, but by a closely related set of reactions,
which yield chemical oscillations. If a certain activator
concentration rises and vanishes repeatedly over time,
the cells being in the zone when the activator is on may
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(a)

(b)

(c)

(d)

F. 1. Computer simulation of stripe prepattern in a three-dimensional region resembling an early insect embryo. Spontaneous pattern
formation occurs in reaction-diffusion systems. In the model shown here, a gradient is imposed posteriorly (right) and the resulting space
dependent rate constant in the RD system creates a Turing pattern (a) which yields stripes posteriorly, but anteriorly the stripes break up
to yield a highly symmetrical pattern which may play a role in head formation. Once established, this RD prepattern governs the read out of
genes related to segment formation in the embryo. If an inhibitor is present with high concentration posteriorly, such genes are prohibited
from being activated posteriorly and no segments form. When the inhibitor gradually vanish, stripes are activated one after another (b–d).
If the inhibitor gradient triggers another activator gene in a zone along the inhibitor gradient, this progress zone would activate a few stripes
simultaneously along the Turing pattern, and eventually all stripes become activated from left to right. Finally, several such distinct activator
regions may form, as realized with the gap genes in Drosophila, to yield activation of all the stripes along the Turing pattern simultaneously.
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subsequently express another gene, say en, and when
the cells leave the growth zone, the result is a growing
number of en stripes as the embryo grows.

The point here is that all such mechanisms are
potential segment generators, and it may thus not be
a particular gene, which is the common ancestral
pattern generator. Rather, the class of highly nonlinear
autocatalytic chemical reactions may be a more likely
candidate underlying repetitive processes in early
evolution. Such systems may easily yield chemical
time-oscillations, which may be used to generate
segments sequentially as described above, but the
very same chemical processes are prone to yield
Turing-type patterns, as we will discuss below.

Such autocatalytic systems may also be present in
the systems involved in cell-to-cell communication.
Even Turing’s mechanism may be generalized to
this situation, with cell-to-cell communication rates
replacing simple diffusion. The essence of a Turing
pattern generator is the balance between growth from
an autocatalytic process and dissipation by another
mechanism, of which diffusion is only one member
of the class.

There may thus be several chemical control systems
around that have generated repetitive patterns in early
evolution, and it may be that various segmentation
processes are genetically related only superficially
(Riddihough, 1992a,b).

Nonlinear Dynamics is Triggered by Gene Clusters

In this section,we demonstrate for particularmodels
that control systems, which gradually approach off–on
control, greatly facilitate pattern formation by
Turing’smechanism.Usually, effectiveHill numbers in
such studies have been taken to be less than 03 as this
conforms to the actual values measured for enzyme
regulation in the cytoplasm. In the genetic control
systems discussed above, however, it is common to
have substantially larger Hill numbers, often appar-
ently in excess of 8. In the following we will explore this
feature.

A Turing system of the first kind is defined as

1c/1t=F(c)+DDc. (1)

Simple linear stability theory has been treated in
many sources (see for example Murray, 1989). For a
reaction-diffusion system of the form

1x
1t

=f(x, y)+D1Dx (2)

1y
1t

=g(x, y)+D2Dy, (3)

one defines the Jacobian matrix

J=0 1f/1x 1f/1y
1g/1x 1g/1y 1=0 fx fy

gx gy 1=0 a b
c d 1, (4)

where the derivatives are evaluated at the stationary
concentrations where f=g=0.

There are only two classes (I) and (II) of such Turing
systems defined by the following two Jacobians

J=0+ −
+ − 1(I) J=0+ +

− − 1(II). (5)

Two further Jacobians may be obtained from the
trivial operation of interchanging x and y with
the result

J=0− +
− + 1(I') J=0− −

+ + 1(II'). (6)

The first class (I) is known as an activator-inhibitor
system. The second class (II) has no obvious
classification of activators or inhibitors. Both x
and y enhance the first rate, and both decrease the
second rate. One may define the self-activator to be the
substance which has a positive element (+ in the above
matrices) in the diagonal, i.e. the component which
enhances its own formation. The other component
generally is self-inhibitory (minus sign in the diagonal)
and it is well established that it must diffuse faster than
the self-activator.

In class (I) (the standard activation-inhibition
system) the two substances x and y are coincident with
respect to maxima in the emerging patterns: x is
high where y is high and vice versa, contrary to
conventional wisdom. The second class (II) has high x
where y is low, but this is not an activator-inhibitor
system.

The eigenvalues to J are found from

l2−l(a+b)+(ad−bc)=0, (7)

i.e.

l2−lTr+det=0 (8)

for short. Both eigenvalues have negative real part iff

TrQ0 (9)

detq0. (10)

Note that inequality (9) means that the self-inhibitor
has a stronger effect upon itself than the auto
activation of the activator, a point which is usually
not incorporated in some popular qualitative
‘‘explanations’’ of the onset of Turing instabilities.
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Such popularizations have been criticized in Cross
& Hohenberg (1993), where it is argued that Turing
pattern formation explained by simple local activation,
lateral inhibition considerations may be intuitively
appealing but somewhat restrictive.

When diffusion is added, the diagonal elements
of J change to (a−k2D1) and (d−k2D2) and the

eigenvalues are found from

l2−l[Tr−k2(D1+D2)]+det

−k2(aD2+dD1)+k4D1D2=0. (11)

This may generate eigenvalues with positive real part
(see Fig. 2).

F. 2. Pattern formation by Turing’s mechanism is facilitated by increasing cooperativity and thus high effective Hill constants g in the
defining rates. Such an increase in nonlinearity has occurred during evolution in gene control systems, for example where the promoter of
the gene has developed several binding sites for gene controlling proteins. Cooperativity with effective g in excess of 8 has been recorded
experimentally for several different gene control systems. Such high Hill constants may have developed under evolutionary pressure, as they
are necessary for accurate control in other contexts, even in single cells, but such control systems also become increasingly prone to create
spontaneous pattern formation by Turing’s mechanism. We have plotted the dispersion relation [eqn (11) in the text] for two mechanisms:
eqns (27) and (28) (upper) with a=0.068 and D−/D+=5.0, for g=3, 6, 8 respectively, and eqns (61) and (62) (lower) with A=8, B=42, C=4,
D−/D+=5.0, for g=2, 3, 4 respectively.
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As TrQ0 we haveD1$D2, otherwise we cannot have

aD2+dD1q0, (12)

which is an immediate necessary condition for
eigenvalues with positive real part. The system is
unstable if the last term is negative:

P(k2)=det−k2(aD2+dD1)+k4D1D2Q0. (13)

The minimum of this polynomial obtains for

k2=j=
aD2+dD1

2D1D2
(14)

and P(j)Q0 and detq0 evaluate to

0QdetQ(aD2+dD2)2

4D1D2
. (15)

This is the standard inequality derived in many
sources. Note though that we may obtain an explicit
inequality for x=D1/D2. Rearranging eqn (15) we get

d2x2−(2ad−4bc)x+a2q0. (16)

This has two real roots x1, x2:

x=
(det−bc)22z−bc det

d2 . (17)

Only one of these applies though: From eqn (12) we
have

dxq−a (18)

but from eqn (17)

dx=
(det−bc)22z−bc det

d
. (19)

For the root x− we get

dx+a=
(det−bc)−2z−bc det

d
+a (20)

=
det
2

zdet−z−bc
d

. (21)

Since adQ0 for the Turing matrices with d positive this
implies ad−bcQ−bc and thus

zdet−z−bc
d

Q0. (22)

However, this root does not fulfil inequality (18) and
thus x− does not apply. The other root yields

x0
D−

D+
q(det−bc)+2z−bc det

d2 , (23)

which holds for the Turing matrices with positive d, (I')
and (II') in eqn (6). We have stressed that the inequality
contains the diffusion constant for the self-inhibitorD−

divided by the diffusion coefficient for the self-activa-

tor.
The remaining Turing matrices obtain by simple

interchange of system 1 with system 2, and thus a
negative d is interchanged with a positive a. Thus
for Turing matrices of the form (I) and (II) [eqn (5)],
we have

D−

D+
q(det−bc)+2z−bc det

a2 . (24)

Related expressions have been derived elsewhere
butwewill use these particular inequalities for the ratio
of diffusion coefficients to show that the diffusion
constants may become almost equal in magnitude
when the cooperativity of the defining kinetics becomes
as high as is seen in genetic control systems. This has
not been shown before.

We shall demonstrate this for a number of particular
mechanisms.

()  ’ 

1x
1t

=n−
k1xyg

1+Kyg+D1Dx (25)

1y
1t

=
k1xyg

1+Kyg−k2y+D2Dy. (26)

Here component one is generated by a constant
uniform rate n and transformed into component two
by Hill-type kinetics. Component two is created by the
same rate and decomposed by first-order kinetics.
Usually the denominator is neglected and the
equations renormalized to the form

1x
1t

=1−xyg+D1Dx (27)

1y
1t

=axyg−ay+D2Dy (28)

which has the stationary solution x*=y*=1 and the
Jacobian elements evaluate to a=−1, b=−g, c=a

and d=a(g−1).
Stability towards homogeneous oscillations are

provided by inequalities (9) and (10), that is,

Tr=a(g−1)−1Q0 (29)

and det=a. Thus an increasing cooperativity,
measured by Hill constant g, make the system
more prone to autonomous oscillations, a well-known
result. For gq1 the Jacobian becomes a Turing matrix
of the form (II') in eqn (6). The ratio between diffusion
constants, inequality (23), evaluates to

D−

D+
q1+g+2zg

a(g−1)2 q1+g+2zg

g−1
, (30)
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where we have used inequality (29). Inequality (30)
may be rewritten

D−

D+
qzg+1

zg−1
. (31)

For increasing cooperativity g the ratio between
diffusion constants approaches one.

In the following we shall demonstrate that the same
may be shown for a number of other mechanisms.
Whenever the effective Hill constant increases the
critical ratio of diffusion constants approaches one.
Thus Turing instabilities are greatly facilitated by high
nonlinearity in the kinetics.

()      

1x
1t

=Axgy−(B+1)x+1 (32)

1y
1t

=−Axgy+Bx. (33)

Usually g is set to 2. Here we consider higher values.
The stationary solutions are x*=1, y*=B/A. With
w=B(g−1), the Jacobian elements evaluate to
a=w−1, b=A, c=−w and d=−A. Thus to have a
Turing matrix [of the form II in eqn (5)] we must have
w−1q0. The inequality (9) evaluates to

(w−1)−AQ0 (34)

and det=A. Thus the ratio of diffusion constants must
satisfy inequality (24) which evaluates to

D−

D+
qA(1+w+2zw)

(w−1)2 (35)

qzw+1
zw−1

, (36)

where we again have used the condition for the trace,
inequality (34). Since w=B(g−1), increasing coopera-
tivity again results in a ratio of diffusion constants
approaching one.

Note, however, that now an increase in g may
be compensated by a lower value of the effective
rate constant B. However, if the other kinetics is
unchanged, but the system has its cooperativity
increased, then the system becomes increasingly a
Turing system.

()    

1x
1t

=A−x+xgy (37)

1y
1t

=−xgy+B. (38)

With the temporary abbreviation

w1=A+B (39)

the stationary state evaluates to

x*=w1 (40)

y*=
B

(w1)g
(41)

and the Jacobian becomes

J=G
G

G

F

f

Bg

w1
−1

−
Bg

w1

wg
1

−wg
1

G
G

G

J

j

. (42)

This is a Turing matrix of type II [eqn (5)] if matrix
element aq0, that is

Bg

w1
−1q0. (43)

The determinant is wg
1 and the trace inequality (9) is

Tr=
Bg

w1
−1−wg

1Q0. (44)

The ratio of the diffusion constants, inequality (24),
evaluates to

D−

D+
q(w1)g

1+
Bg

w1
+2XBg

w1

0Bg

w1
−11

2
. (45)

From inequality (44)

(w1)gqBg

w1
−1 (46)

and thus (45) becomes,

D−

D+
q w−1

(zw−1)2
=

zw+1
zw−1

, (47)

with

w=
Bg

w1
=

Bg

A+B
. (48)

Again the ratio of diffusion constants approaches
one when g increases as w is proportional to the Hill
constant g.
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()      

1x
1t

=A−Bx+
xg

y
(49)

1y
1t

=xg−y. (50)

Observe that the term with high nonlinearity is not
taken to be the same in the two rates, contrary to our
earlier models. With

w1=
B

A+1
, (51)

the stationary concentrations are

x*=
1
w1

(52)

y*=
1
wg

1
. (53)

The Jacobian elements evaluate to a=w1g−B,
b=−wg

1, c=gw−g+1
1 and d=−1 respectively. This is a

Turing matrix of type I in eqn (5) provided w1g−Bq0.
The trace and determinant evaluate to

Tr=w1g−B−1Q0 (54)

det=Bq0. (55)

The ratio of diffusion constants is evaluated from
inequality (24) to yield

D−

D+
qB+gw1+2zgBw1

(w1g−B)2 . (56)

It is convenient to change to variable

w2=
g

A+1
, (57)

and thus gw1=Bw2. Using the trace inequality (54),
B(w2−1)Q1, inequality (56) becomes

D−

D+
q1+w2+2zw2

B(w2−1)2 (58)

q1+w2+2zw2

w2−1
(59)

=
zw2+1

zw2−1
. (60)

As w2 is proportional to the Hill coefficient g, we
again find that, for increasing cooperativity, the ratio
between diffusion coefficients tends to 1.

()   – 

1x
1t

=A−x−
Cxy
1+xg (61)

1y
1t

=B0x−
xy

1+xg 1. (62)

Here the nonlinearity is only inhibitory, whereas
our former examples were cooperative activation.
With the abbreviation

w1=
A

C+1
, (63)

the stationary concentrations evaluate to

x*=w1 (64)

y*=1+wg
1 (65)

and the Jacobian matrix elements become

a=−1−C+
Cgwg

1

1+wg
1
, b=−

Cw1

1+wg
1

(66)

c=
Bgwg

1

1+wg
1
, d=−

Bw1

1+wg
1
. (67)

This is a Turing matrix of type I in eqn (5) provided
aq0, that is

−1−C+
Cgwg

1

1+wg
1
q0. (68)

The condition for the trace evaluates to

Tr=−1−C+
Cgwg

1−Bw1

1+wg
1

(69)

=−(C+1)+
Cg(w2−1)−Bw1

w2
Q0, (70)

where we have introduced another temporary
abbreviation

w2=1+wg
1. (71)

The determinant is

det=(C+1)
Bw1

w2
(72)
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and the ratio between diffusion constants [inequality
(24)] evaluate to

D−

D+
qBw1

w2

×

(C+1)+
Cg(w2−1)

w2
+2X(C+1)Cg

(w2−1)
w2

0Cg(w2−1)
w2

−(C+1)1
2

.

(73)

Using inequality (70) in the form

Bw1

w2
qCg(w2−1)

w2
−(C+1), (74)

inequality (73) may be written

D−

D+
q

(C+1)+
Cg(w2−1)

w2
+2X(C+1)Cg

(w2−1)
w2

0Cg(w2−1)
w2

−(C+1)1
(75)

=
1+z+2!z

z−1
(76)

=
!z+1
!z−1

, (77)

where we have finally introduced variable z by

z=g0 C
C+11 w2−1

w2

=g0 C
C+11

0 A
C+11

g

1+0 A
C+11

g

. (78)

If

0 A
C+11

g

1+0 A
C+11

g

4 1, (79)

which obtains for

A
C+1

�1, (80)

variable z becomes proportional to g and thus
again, high cooperativity facilitates Turing structures,
as the ratio between diffusion coefficients tend to
1. Condition (80) is the same as stating that the
stationary concentration of x fulfils x*�1 which again
means that the system operates on the strongly
inhibitory side of the term

Cxy
1+xg (81)

in the defining rates.
In all the models investigated here, we obtain an

expression of the form

D−

D+
q!z+1

!z−1
(82)

(Table 1), where z is a function of g, usually a linear
function at least for suitable parameter values, and
thus z increases with increasing cooperativity g. It is
tempting to suggest that this will always obtain, but
even with occasional exemptions to this rule the
above results show that a substantial class of models
become Turing systems with increasing cooperativity.
Thus the usually stated requirement of having effective
diffusion coefficients differ by almost an order of
magnitude, which is often found in systems with small
Hill constants, is relaxed in gene control systems where
much larger effective Hill constants have been
recorded.

We proceed by noting that the dispersion equation
[eqn (11)] yields an increasing Turing region with
increasing Hill number. In Fig. 2 we have calculated
the eigenvalue l from eqn (11) as a function of
wave number k as is usual, but with the extension of
plotting a set of such curves for increasing values of the
Hill constant g.

We conclude that Turing pattern formation may
be much more feasible in actual biological systems,
if the mechanism is connected to the gene control
system with high Hill numbers, than would be
expected from studies of inorganic model systems, or
experimental realizations of such inorganic systems,
as these latter systems rarely have Hill numbers
exceeding 2. This discovery thus supplements earlier
discussions of the feasibility of a substantial ratio
between effective diffusion constants in Turing’s
mechanism (Hunding & So�rensen, 1988; Pearson &
Horsthemke, 1989).
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T 1
Ratio of diffusion coefficients
D−/D+ in a Turing system
approaches one when effec-
tive Hill constant increases

according to eqn (82)
z D−/D+

2 5.83
4 3.00
8 2.09

16 1.67

In eqn (82) z is a function of the
effective Hill constant g and for a
number of mechanisms it has been
shown here that z2g at least for
suitable parameter combinations

connected reaction networks. Multistability is a
prerequisite for multifunctionality and adaptation, but
the step from this level to cell differentiation is short,
and models for the emergence of stable reaction cycles
rest on such highly nonlinear kinetics (Kauffman,
1993).

Highly nonlinear off–on control is also a prerequisite
for interpretation of positional information. It is not
enough that a system is able to discern different
information: it must also be able to remember it. Thus,
later in evolution, when precise size regulation and the
basis for multifunctionality and cell differentiation
were established, this feature of precise concentration
response may then have been explored to read out
positional information along a gradient. The coopera-
tivity recorded experimentally is very high, often
effective Hill numbers exceeding 8 are inferred. This
creates an almost ideal on–off system. Such control
could then be used to read position along a gradient
and thus to create a local peak of gene expression, or
subsequently to yield double stripes on both sides of
such a peak, as discussed above.

Such use of positional information is known to
be used repeatedly. The initial anterior-posterior
gradients in Drosophila as well as the dorsal-ventral
organization are such examples, and recent studies of
gene hedgehog point to an important role for such
a hierarchy of gradients in wing patterning as well
(for references, see O’Farrell, 1994).

However, it is important to realize that any control
systems with high Hill numbers will be prone to yield
time-oscillations, and this will be true of many Turing
systems as well, as remarked above. Moreover, for
many model systems, the higher the Hill number, the
easier it is to get Turing structures with effective
diffusion rates which do not differ much from each
other. Thus the usual requirement of approximately an
order of magnitude spread between the two effective
diffusion rates is relaxed, and a trend towards higher
Hill numbers would greatly facilitate the formation of
a Turing structure. It should be stressed then, that
Turing pattern formation is not a particular special
case, but a pattern-forming process, which emerges
with the same requirements to the control system as
pattern formation on the basis of reading positional
information along a gradient. In both cases, high Hill
numbers are essential.

The main point then is that a gene system which is
capable of discriminating small differences in
concentration is prone to generate cue control,
chemical oscillations and Turing type patterns as well.

The connection between the homeobox genes and
the fundamental pattern forming processes may thus
not be that of an ancestral pattern gene which has

Discussion

One role the homeobox genes—or their pre-
decessors, the genes for helix-turn-helix proteins—may
have played in this context is to provide a system with
very high cooperativity. Initially in evolution such a
system may be used simply to read subtle differences
of concentrations, quite possible within a single cell.
Indeed, several processes need fine tuned control in
which the system is required to respond in a nearly
off–on manner when concentrations are varied with
less than a factor of 2.

Examples are the very central process of control of
the cell cycle governing mitosis in which the cell must
respond with an entirely new mode when its mass is
increased by a factor of 2. Any control system capable
of this must meet the additional requirement to
adapt to somewhat varying size of the single cell. This
necessitates a very precise control, made possible
with highly nonlinear off–on kinetics. An example of
a model which captures these features may be found in
Novak & Tyson (1993).

Second, it may be noted that highly nonlinear off–on
control is a central feature of ‘‘active gene control’’.
(The experimental basis for dynamic maintenance of
multistability in cells, known as active control, as
opposed to a once and for all inactivation (passive
control), has been reviewed in Blau (1992).) It is
experimentally well established that a single gene
product may be active in different time intervals
of the life of a cell, and thus that the gene may be
activated by different combinations of other gene
products. In turn, the genes own product may itself be
involved in quite different molecular jigzaw puzzles
of activating or repressing clusters on the promoter
for other genes. In the corresponding theoretical
framework, theoretical framework, highly nonlinear
off–on control is a central feature of multistability in
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developed into a class of such genes. Rather, the
homeobox genes have the ability to create proteins
which bind to the promoter region of another gene.
One gene controls the expression of another gene. The
protein may during evolution develop several binding
sites to the promoter or other proteins. These parts are
envisaged to fold up in a sort of three dimensional
jigzaw puzzle involving many such binding sites.
The result may be highly cooperative control.

In addition, a particular gene may take part in
several such jigzaw puzzles. Many of the genes already
mentioned have this property. An explicit example is
hairy, which in early evolution seems to be originally
connected to the nervous system but later in evolution
burrowed to play a role in the initial body plan of
Drosophila. Thus a particular pattern forming process
is not connected to a particular gene, or gene class.
Rather, the particular pattern forming process is
generated by genes generally capable to be involved in
highly cooperative control.

This property of high cooperativity in the gene
regulatory system then yields a class of control systems,
which should be easy to exploit to make particular
patterns like sequentially arising stripes, pairs of stripes
laid down in succession, or even Turing-type spatial
waves, as discussed above.

In summary, the study of nonlinear dynamics, i.e.
the properties of nonlinear control systems, are equally
important for the understanding of the emergence
of patterns in multicellular systems, as are studies of
protein structure or the geometry of protein–gene
interactions.
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APPENDIX

Numerical Treatment of Pattern Formation

Our efforts to develop efficient software for the
calculation of spontaneous pattern formation in

biological systems have led to fast codes for vector
supercomputers. The numerical method we have used
is largely the same as earlier described (Hunding et al.,
1990). The method of lines was used and thus the
system of nonlinear partial differential equations was
converted to a large system of ordinary differential
equations by discretization of the Laplacian in three
curvilinear coordinates. The resulting system is stiff
and solved accordingly (modified Gear code).

The Jacobian used in the corrector step is a sparse
banded matrix which may be rearranged (chessboard
numbering of meshpoints) to yield large blocks within
which the solution vector elements may be iterated
in parallel (RBSOR method). Implementation on
vector computers results in a huge increase in speed:
the RBSOR code runs efficiently and close to the top
speed of vector machines like the Fujitsu/Amdahl
VP1200 (410 MFLOPS sustained speed) and 1320
MFLOPS have been recorded on a two-processor
CRAY C90.


